Skip to content

Tru Chain

Langchain instrumentation and monitoring.

TruChain

Bases: App

Instantiates the Langchain Wrapper.

Usage:

Langchain Code: Langchain Quickstart

 # Code snippet taken from langchain 0.0.281 (API subject to change with new versions)
from langchain.chains import LLMChain
from langchain.llms import OpenAI
from langchain.prompts.chat import ChatPromptTemplate
from langchain.prompts.chat import HumanMessagePromptTemplate
from langchain.prompts.chat import PromptTemplate

full_prompt = HumanMessagePromptTemplate(
    prompt=PromptTemplate(
        template=
        "Provide a helpful response with relevant background information for the following: {prompt}",
        input_variables=["prompt"],
    )
)

chat_prompt_template = ChatPromptTemplate.from_messages([full_prompt])

llm = OpenAI(temperature=0.9, max_tokens=128)

chain = LLMChain(llm=llm, prompt=chat_prompt_template, verbose=True)

Trulens Eval Code:

from trulens_eval import TruChain
# f_lang_match, f_qa_relevance, f_qs_relevance are feedback functions
tru_recorder = TruChain(
    chain,
    app_id='Chain1_ChatApplication',
    feedbacks=[f_lang_match, f_qa_relevance, f_qs_relevance])
)
with tru_recorder as recording:
    chain(""What is langchain?")

tru_record = recording.records[0]

# To add record metadata 
with tru_recorder as recording:
    recording.record_metadata="this is metadata for all records in this context that follow this line"
    chain("What is langchain?")
    recording.record_metadata="this is different metadata for all records in this context that follow this line"
    chain("Where do I download langchain?")
See Feedback Functions for instantiating feedback functions.

Parameters:

Name Type Description Default
app Chain

A langchain application.

required
Source code in trulens_eval/trulens_eval/tru_chain.py
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
class TruChain(App):
    """Instantiates the Langchain Wrapper.

        **Usage:**

        Langchain Code: [Langchain Quickstart](https://python.langchain.com/docs/get_started/quickstart)
        ```
         # Code snippet taken from langchain 0.0.281 (API subject to change with new versions)
        from langchain.chains import LLMChain
        from langchain.llms import OpenAI
        from langchain.prompts.chat import ChatPromptTemplate
        from langchain.prompts.chat import HumanMessagePromptTemplate
        from langchain.prompts.chat import PromptTemplate

        full_prompt = HumanMessagePromptTemplate(
            prompt=PromptTemplate(
                template=
                "Provide a helpful response with relevant background information for the following: {prompt}",
                input_variables=["prompt"],
            )
        )

        chat_prompt_template = ChatPromptTemplate.from_messages([full_prompt])

        llm = OpenAI(temperature=0.9, max_tokens=128)

        chain = LLMChain(llm=llm, prompt=chat_prompt_template, verbose=True)

        ```

        Trulens Eval Code:
        ```

        from trulens_eval import TruChain
        # f_lang_match, f_qa_relevance, f_qs_relevance are feedback functions
        tru_recorder = TruChain(
            chain,
            app_id='Chain1_ChatApplication',
            feedbacks=[f_lang_match, f_qa_relevance, f_qs_relevance])
        )
        with tru_recorder as recording:
            chain(""What is langchain?")

        tru_record = recording.records[0]

        # To add record metadata 
        with tru_recorder as recording:
            recording.record_metadata="this is metadata for all records in this context that follow this line"
            chain("What is langchain?")
            recording.record_metadata="this is different metadata for all records in this context that follow this line"
            chain("Where do I download langchain?")
        ```
        See [Feedback Functions](https://www.trulens.org/trulens_eval/api/feedback/) for instantiating feedback functions.

        Args:
            app (Chain): A langchain application.
    """

    app: Chain

    # TODO: what if _acall is being used instead?
    root_callable: ClassVar[FunctionOrMethod] = Field(
        default_factory=lambda: FunctionOrMethod.of_callable(TruChain._call),
        const=True
    )

    # Normally pydantic does not like positional args but chain here is
    # important enough to make an exception.
    def __init__(self, app: Chain, **kwargs):
        """
        Wrap a langchain chain for monitoring.

        Arguments:
        - app: Chain -- the chain to wrap.
        - More args in App
        - More args in AppDefinition
        - More args in WithClassInfo
        """

        super().update_forward_refs()

        # TruChain specific:
        kwargs['app'] = app
        kwargs['root_class'] = Class.of_object(app)
        kwargs['instrument'] = LangChainInstrument(app=self)

        super().__init__(**kwargs)

        self.post_init()

    # TODEP
    # Chain requirement
    @property
    def _chain_type(self):
        return "TruChain"

    # TODEP
    # Chain requirement
    @property
    def input_keys(self) -> List[str]:
        return self.app.input_keys

    # TODEP
    # Chain requirement
    @property
    def output_keys(self) -> List[str]:
        return self.app.output_keys

    def main_input(
        self, func: Callable, sig: Signature, bindings: BoundArguments
    ) -> str:
        """
        Determine the main input string for the given function `func` with
        signature `sig` if it is to be called with the given bindings
        `bindings`.
        """

        if 'inputs' in bindings.arguments:
            # langchain specific:
            ins = self.app.prep_inputs(bindings.arguments['inputs'])

            if len(self.app.input_keys) == 0:
                logger.warning(
                    "langchain app has no inputs. `main_input` will be `None`."
                )
                return None

            return ins[self.app.input_keys[0]]

        return App.main_input(self, func, sig, bindings)

    def main_output(
        self, func: Callable, sig: Signature, bindings: BoundArguments, ret: Any
    ) -> str:
        """
        Determine the main out string for the given function `func` with
        signature `sig` after it is called with the given `bindings` and has
        returned `ret`.
        """

        if isinstance(ret, Dict):
            # langchain specific:
            if self.app.output_keys[0] in ret:
                return ret[self.app.output_keys[0]]

        return App.main_output(self, func, sig, bindings, ret)

    def main_call(self, human: str):
        # If available, a single text to a single text invocation of this app.

        out_key = self.app.output_keys[0]

        return self.app(human)[out_key]

    async def main_acall(self, human: str):
        # If available, a single text to a single text invocation of this app.

        out_key = self.app.output_keys[0]

        return await self._acall(human)[out_key]

    def __getattr__(self, __name: str) -> Any:
        # A message for cases where a user calls something that the wrapped
        # chain has but we do not wrap yet.

        if safe_hasattr(self.app, __name):
            return RuntimeError(
                f"TruChain has no attribute {__name} but the wrapped app ({type(self.app)}) does. ",
                f"If you are calling a {type(self.app)} method, retrieve it from that app instead of from `TruChain`. "
                f"TruChain presently only wraps Chain.__call__, Chain._call, and Chain._acall ."
            )
        else:
            raise RuntimeError(f"TruChain has no attribute named {__name}.")

    # NOTE: Input signature compatible with langchain.chains.base.Chain.acall
    # TODEP
    async def acall_with_record(self, *args, **kwargs) -> Tuple[Any, Record]:
        """
        Run the chain acall method and also return a record metadata object.
        """

        self._with_dep_message(method="acall", is_async=True, with_record=True)

        return await self.awith_record(self.app.acall, *args, **kwargs)

    # NOTE: Input signature compatible with langchain.chains.base.Chain.__call__
    # TODEP
    def call_with_record(self, *args, **kwargs) -> Tuple[Any, Record]:
        """
        Run the chain call method and also return a record metadata object.
        """

        self._with_dep_message(
            method="__call__", is_async=False, with_record=True
        )

        return self.with_record(self.app.__call__, *args, **kwargs)

    # TODEP
    # Mimics Chain
    def __call__(self, *args, **kwargs) -> Dict[str, Any]:
        """
        Wrapped call to self.app._call with instrumentation. If you need to
        get the record, use `call_with_record` instead. 
        """

        self._with_dep_message(
            method="__call__", is_async=False, with_record=False
        )

        return self.with_(self.app, *args, **kwargs)

    # TODEP
    # Chain requirement
    def _call(self, *args, **kwargs) -> Any:

        self._with_dep_message(
            method="_call", is_async=False, with_record=False
        )

        ret, _ = self.with_(self.app._call, *args, **kwargs)

        return ret

    # TODEP
    # Optional Chain requirement
    async def _acall(self, *args, **kwargs) -> Any:

        self._with_dep_message(
            method="_acall", is_async=True, with_record=False
        )

        ret, _ = await self.awith_(self.app.acall, *args, **kwargs)

        return ret

__call__(*args, **kwargs)

Wrapped call to self.app._call with instrumentation. If you need to get the record, use call_with_record instead.

Source code in trulens_eval/trulens_eval/tru_chain.py
310
311
312
313
314
315
316
317
318
319
320
def __call__(self, *args, **kwargs) -> Dict[str, Any]:
    """
    Wrapped call to self.app._call with instrumentation. If you need to
    get the record, use `call_with_record` instead. 
    """

    self._with_dep_message(
        method="__call__", is_async=False, with_record=False
    )

    return self.with_(self.app, *args, **kwargs)

__init__(app, **kwargs)

Wrap a langchain chain for monitoring.

  • app: Chain -- the chain to wrap.
  • More args in App
  • More args in AppDefinition
  • More args in WithClassInfo
Source code in trulens_eval/trulens_eval/tru_chain.py
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
def __init__(self, app: Chain, **kwargs):
    """
    Wrap a langchain chain for monitoring.

    Arguments:
    - app: Chain -- the chain to wrap.
    - More args in App
    - More args in AppDefinition
    - More args in WithClassInfo
    """

    super().update_forward_refs()

    # TruChain specific:
    kwargs['app'] = app
    kwargs['root_class'] = Class.of_object(app)
    kwargs['instrument'] = LangChainInstrument(app=self)

    super().__init__(**kwargs)

    self.post_init()

acall_with_record(*args, **kwargs) async

Run the chain acall method and also return a record metadata object.

Source code in trulens_eval/trulens_eval/tru_chain.py
286
287
288
289
290
291
292
293
async def acall_with_record(self, *args, **kwargs) -> Tuple[Any, Record]:
    """
    Run the chain acall method and also return a record metadata object.
    """

    self._with_dep_message(method="acall", is_async=True, with_record=True)

    return await self.awith_record(self.app.acall, *args, **kwargs)

call_with_record(*args, **kwargs)

Run the chain call method and also return a record metadata object.

Source code in trulens_eval/trulens_eval/tru_chain.py
297
298
299
300
301
302
303
304
305
306
def call_with_record(self, *args, **kwargs) -> Tuple[Any, Record]:
    """
    Run the chain call method and also return a record metadata object.
    """

    self._with_dep_message(
        method="__call__", is_async=False, with_record=True
    )

    return self.with_record(self.app.__call__, *args, **kwargs)

main_input(func, sig, bindings)

Determine the main input string for the given function func with signature sig if it is to be called with the given bindings bindings.

Source code in trulens_eval/trulens_eval/tru_chain.py
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
def main_input(
    self, func: Callable, sig: Signature, bindings: BoundArguments
) -> str:
    """
    Determine the main input string for the given function `func` with
    signature `sig` if it is to be called with the given bindings
    `bindings`.
    """

    if 'inputs' in bindings.arguments:
        # langchain specific:
        ins = self.app.prep_inputs(bindings.arguments['inputs'])

        if len(self.app.input_keys) == 0:
            logger.warning(
                "langchain app has no inputs. `main_input` will be `None`."
            )
            return None

        return ins[self.app.input_keys[0]]

    return App.main_input(self, func, sig, bindings)

main_output(func, sig, bindings, ret)

Determine the main out string for the given function func with signature sig after it is called with the given bindings and has returned ret.

Source code in trulens_eval/trulens_eval/tru_chain.py
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
def main_output(
    self, func: Callable, sig: Signature, bindings: BoundArguments, ret: Any
) -> str:
    """
    Determine the main out string for the given function `func` with
    signature `sig` after it is called with the given `bindings` and has
    returned `ret`.
    """

    if isinstance(ret, Dict):
        # langchain specific:
        if self.app.output_keys[0] in ret:
            return ret[self.app.output_keys[0]]

    return App.main_output(self, func, sig, bindings, ret)