โ๏ธ Snowflake Arctic Quickstart with Cortex LLM Functionsยถ
In this quickstart you will learn build and evaluate a RAG application with Snowflake Arctic.
Building and evaluating RAG applications with Snowflake Arctic offers developers a unique opportunity to leverage a top-tier, enterprise-focused LLM that is both cost-effective and open-source. Arctic excels in enterprise tasks like SQL generation and coding, providing a robust foundation for developing intelligent applications with significant cost savings. Learn more about Snowflake Arctic
In this example, we will use Arctic Embed (snowflake-arctic-embed-m
) as our embedding model via HuggingFace, and Arctic, a 480B hybrid MoE LLM for both generation and as the LLM to power TruLens feedback functions. The Arctic LLM is fully-mananaged by Cortex LLM functions
Note, you'll need to have an active Snowflake account to run Cortex LLM functions from Snowflake's data warehouse.
# !pip install trulens trulens-providers-cortex chromadb sentence-transformers snowflake-snowpark-python
import os
from snowflake.snowpark import Session
from trulens.core.utils.keys import check_keys
check_keys("SNOWFLAKE_ACCOUNT", "SNOWFLAKE_USER", "SNOWFLAKE_USER_PASSWORD")
connection_params = {
"account": os.environ["SNOWFLAKE_ACCOUNT"],
"user": os.environ["SNOWFLAKE_USER"],
"password": os.environ["SNOWFLAKE_USER_PASSWORD"],
"role": os.environ.get("SNOWFLAKE_ROLE", "ENGINEER"),
"database": os.environ.get("SNOWFLAKE_DATABASE"),
"schema": os.environ.get("SNOWFLAKE_SCHEMA"),
"warehouse": os.environ.get("SNOWFLAKE_WAREHOUSE"),
}
# Create a Snowflake session
snowflake_session = Session.builder.configs(connection_params).create()
Get Dataยถ
In this case, we'll just initialize some simple text in the notebook.
university_info = """
The University of Washington, founded in 1861 in Seattle, is a public research university
with over 45,000 students across three campuses in Seattle, Tacoma, and Bothell.
As the flagship institution of the six public universities in Washington state,
UW encompasses over 500 buildings and 20 million square feet of space,
including one of the largest library systems in the world.
"""
Create Vector Storeยถ
Create a chromadb vector store in memory.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("Snowflake/snowflake-arctic-embed-m")
document_embeddings = model.encode([university_info])
import chromadb
chroma_client = chromadb.Client()
vector_store = chroma_client.get_or_create_collection(name="Universities")
Add the university_info to the embedding database.
vector_store.add(
"uni_info", documents=university_info, embeddings=document_embeddings
)
Build RAG from scratchยถ
Build a custom RAG from scratch, and add TruLens custom instrumentation.
from trulens.core import TruSession
from trulens.apps.custom import instrument
session = TruSession()
session.reset_database()
import json
class RAG_from_scratch:
@instrument
def retrieve(self, query: str) -> list:
"""
Retrieve relevant text from vector store.
"""
results = vector_store.query(
query_embeddings=model.encode([query], prompt_name="query"),
n_results=2,
)
return results["documents"]
@instrument
def generate_completion(self, query: str, context_str: list) -> str:
"""
Generate answer from context.
"""
def escape_string_for_sql(input_string):
escaped_string = input_string.replace("\\", "\\\\")
escaped_string = escaped_string.replace("'", "''")
return escaped_string
prompt = escape_string_for_sql(f"""
We have provided context information below.
{context_str}
Given this information, please answer the question: {query}
""")
res = snowflake_session.sql(f"""SELECT SNOWFLAKE.CORTEX.COMPLETE(
'snowflake-arctic',
[
{{'role': 'user', 'content': '{prompt}'}}
], {{
'temperature': 0
}}
)""").collect()
if len(res) == 0:
return "No response from cortex function"
completion = json.loads(res[0][0])["choices"][0]["messages"]
print("full response from cortex function:")
print(res)
return completion
@instrument
def query(self, query: str) -> str:
context_str = self.retrieve(query)
completion = self.generate_completion(query, context_str)
return completion
rag = RAG_from_scratch()
Dev Note as of June 2024:ยถ
Alternatively, we can use Cortex's Python API (documentation) directly to have cleaner interface and avoid constructing SQL commands ourselves.
The reason we are invoking the SQL function directly via snowflake_session.sql()
is that the response from Cortex's Python API is still experimental and not as feature-rich as the one from SQL function as of the time of writing. i.e. inconsistency issues with structured json outputs and missing usage information have been observed, lack of support for advanced chat-style (multi-message), etc.
Below is a minimal example of using Python API instead.
# from snowflake.cortex import Complete
# def complete(user_query) -> str:
# completion = Complete(
# model="snowflake-arctic",
# prompt=f"[FILL IN SYSTEM PROMPTS IF NEEDED ]{user_query}",
# session=snowflake_session,
# )
# return completion
Set up feedback functions.ยถ
Here we'll use groundedness, answer relevance and context relevance to detect hallucination.
import numpy as np
import snowflake.connector
from trulens.core import Feedback
from trulens.core import Select
from trulens.providers.cortex import Cortex
import snowflake.connector
# Create a Snowflake connection
snowflake_connection = snowflake.connector.connect(
**connection_params
)
provider = Cortex(
snowflake_connection,
model_engine="snowflake-arctic",
)
# Define a groundedness feedback function
f_groundedness = (
Feedback(
provider.groundedness_measure_with_cot_reasons, name="Groundedness"
)
.on(Select.RecordCalls.retrieve.rets.collect())
.on_output()
)
# Question/answer relevance between overall question and answer.
f_answer_relevance = (
Feedback(provider.relevance_with_cot_reasons, name="Answer Relevance")
.on(Select.RecordCalls.retrieve.args.query)
.on_output()
)
# Question/statement relevance between question and each context chunk.
f_context_relevance = (
Feedback(
provider.context_relevance_with_cot_reasons, name="Context Relevance"
)
.on(Select.RecordCalls.retrieve.args.query)
.on(Select.RecordCalls.retrieve.rets.collect())
.aggregate(np.mean)
)
f_coherence = Feedback(
provider.coherence_with_cot_reasons, name="coherence"
).on_output()
Construct the appยถ
Wrap the custom RAG with TruCustomApp, add list of feedbacks for eval
from trulens.apps.custom import TruCustomApp
tru_rag = TruCustomApp(
rag,
app_name="RAG",
app_version="v1",
feedbacks=[
f_groundedness,
f_answer_relevance,
f_context_relevance,
f_coherence,
],
)
session.reset_database()
Run the appยถ
Use tru_rag
as a context manager for the custom RAG-from-scratch app.
with tru_rag as recording:
resp = rag.query("When is University of Washington founded?")
resp
session.get_leaderboard(app_ids=[])
from trulens.dashboard import run_dashboard
run_dashboard(session)